
PIC Laboratory Board
Manual

V1.2

 By:
 John Peatman

 Georgia Tech

V 1.2 Page 2 of 24

Table of Contents

Foreword
PIC Laboratory Board Manual.. 3

Project One
Introduction to the Microcontroller Development System....................................... 6

Project Two
Bar Graph Display .. 8

Project Three
Bar Graph Intensity... 9

Project Four
LCD Display... 11

Project Five
Display of Character Codes .. 14

Project Six
Temperature Measurement ... 16

Project Seven
RPG Parameter Entry.. 19

Project Eight
Square-wave Output ... 20

Project Nine
Rate-Sensitive RPG Parameter Entry.. 22

Project Ten
Parameter Entry via Keypad ... 23

PIC and PICmicro are register trademarks of Microchip Technology Inc.

V 1.2 Page 3 of 24

PIC Laboratory Board Manual
John B. Peatman, Georgia Tech

The following projects are intended to provide a framework for putting together an instructional laboratory using a
PIC16C74A microcontroller. They make use of Microchip Technology’s new PIC Education Board. They assume that
each station of the laboratory consists of a PC for creating and assembling code, either an emulator (preferred) or a
programmer and ultraviolet eraser to put assembled code into a PIC chip, and a PIC Education Board. An emulator
speeds up the development cycle and gives quicker insight into the sources of bugs in student-generated code.

The laboratory projects make reference to Design with PIC Microcontrollers (see http://www.picbook.com). My
experience is to use the same first project each new time our microcontroller course is taught. The intent of this first
project is to get students into the laboratory and to have them become familiar with the tools available and the lab
procedures. As a lead-in to this first lab, my teaching assistants provide several one-hour demos during the first week of
the course, explaining lab procedures and then going through the first lab project. We encourage students to work in
teams of two, both to be more efficient in the use of the lab equipment and, perhaps more importantly, to have code
debugging supported by two people who presumably understand their code in addition to the help of the TA.

Comments regarding Project One

Working code for the first project is provided in the lab. Each team copies the code onto a floppy (or into their own
account on a server). Students learn to use the text editor and assembler in the lab. They make several minor
modifications to the code, print a listing, and run their code. Since they do not understand anything about the PIC yet,
any modifications must be well directed.

In the course, I begin with an explanation of the CPU register structure and addressing modes. Then, instead of going
through an explanation of the instructions one by one, I use this Project One code as the introduction to what each
instruction in the code does. This places the instruction's use in the context of a program they can understand. It also
arms students to carry out Project Two, where they will need to understand enough about their code and the PIC to
make a small functional addition to the code of Project One.

The code for this first project has a ten-millisecond mainline loop, used to time slow events. The PIC‘s Timer2 is used
to define each ten-millisecond interval. The lighting of each of the top three LEDs is changed every half second. In
addition to illustrating half-second-interval timing, this project also illustrates how tables are employed in PIC code.

One of the interesting resources on the board is an encoder emulator. This provides a low-cost alternative to the rotary
pulse generator (RPG) shown on page 99 of Design with PIC Microcontrollers. Every time either the INC or the DEC
key is depressed, the encoder emulator generates a narrow pulse that is connected to the PIC’s RB0/INT interrupt input.
A second output of the encoder emulator drives the PIC's RC0 input. It indicates the direction of rotation of the
emulated RPG. It is high for INC presses and low for DEC presses, giving direction information analogous to that of
the second output of an RPG. If either key is held down, a string of pulses is emitted, slowly at first and fast shortly
thereafter. This emulates the turning of an RPG slowly to enter small parameter variations and fast for large variations.
The code of Project One echoes the two encoder emulator outputs to the bottom two LEDs, to give an intuitive grasp of
its operation. This code also illustrates the handling of PIC interrupts.

The intent of the Project One code is to provide students with a template for subsequent code writing. It includes

• a header saying what the code does and to identify their names
• a program hierarchy showing the relationship of subroutines within the mainline code and interrupt

handlers within the interrupt service routine
• list and include and __config directives
• equates of names used in the code
• definitions of variables used in the code

V 1.2 Page 4 of 24

• macro definitions
• reset and interrupt vectors
• tables used by the code
• the mainline program and its subroutines
• the interrupt service routine and its handlers

Different code for the first project from that provided here can of course be substituted for this project. However, it is
my experience that even if the code used for Project One is never changed, this no impediment to having richly varied
subsequent projects from one quarter (or semester) to the next.

Text references for Project One

Chapter 3 Pages 33-54 Assembly language program conventions
Section 3.6 Pages 51-54 Macro use
Section 3.5 Pages 46-51 Table use
Sections 4.2, 4.4 Pages 58-63 Timer2 use and its initialization
Section 4.3 Pages 60-61 Interrupt logic
Section 6.2 Pages 95-100 RB0/INT external interrupts; RPG use
Section 5.3 Pages 82-85 Interrupt service routine and its handlers

Functioning of Project One code

The Mainline program first calls Initial to initialize everything. Then it repeatedly calls the Blink and the LoopTime
subroutines every ten milliseconds. Subsequent projects will add further tasks that need to be checked upon every ten
milliseconds.

The Initial subroutine initializes every PIC I/O pin either as an input or as an output, as determined by the circuitry of
the PIC Education Board. It also initializes ADCON1, a necessary prerequisite not only for our subsequent use of three
PORTA pins as ADC inputs but also to enable the remaining pins of PORTA as well as the pins of PORTE as digital
I/O pins. It initializes Timer2 as a ten-millisecond-period counter. It finishes up by enabling RB0/INT interrupts.

The Blink subroutine counts a Blnkcnt variable so as to change the LED pattern only every fiftieth time around the
mainline loop (i.e., every 500 milliseconds). It uses the value returned by the BlinkTable subroutine to select which
bits of PORTD to toggle.

The BlinkTable subroutine reads the state of the LEDs driven by PORTD into W. It moves bits 7,6,5 of W to bits
2,1,0 and forces the remaining bits to zero. Thereby, W contains a number between 0 and 7, depending upon which of
the top three LEDs are turned on. This number is added to the program counter, producing a jump down to one of eight
retlw instructions. The selected retlw instruction causes a return from the subroutine with ones in those bits of W
which correspond to bits of PORTD to be toggled to produce the desired change in the LED pattern.

The LoopTime subroutine simply waits for Timer2 to complete its ten-millisecond count cycle. For this to provide a
ten-millisecond loop time, we assume that even in the worst case, the calls of mainline subroutines plus all possible
interrupt service routines never add up to more than ten milliseconds. Given this, we can count loops to time longer
intervals (e.g., an action which is to be taken every second can be controlled by taking action every hundredth time
around the mainline loop). This subroutine also toggles bit 5 of PORTA, providing a signal that can be used to
measure the loop time with a scope or a universal counter.

The IntService interrupt service routine is entered whenever any interrupt occurs. It sets aside W and the STATUS
register before polling the various possible interrupt sources to determine which one caused the interrupt. After
servicing all interrupts requiring service, STATUS and W are restored and the CPU returns to the execution of the
mainline program. Note that each interrupt handler is called with a goto instruction and terminates with a goto
instruction. As discussed in Chapter 5, this is needed for the PIC to assign priority to interrupt sources; call instructions
will not achieve the desired priority.

V 1.2 Page 5 of 24

The RPG handler clears its interrupt flag and then toggles the INTEDG bit of OPTION_REG. As pointed out on
page 98, this will cause the next edge (rising or falling) from the encoder emulator to produce an interrupt. Because
OPTION_REG is located in Bank 1, students will see how indirect addressing can be used for its access. The two
encoder emulator outputs are then copied to the bottom two LEDs so as to give a visual indication of the operation of
the encoder emulator.

Students “To Do” Handout for Project One

Project One is prepared assuming the use of Microchip Technology’s new MPLAB-ICE 2000 emulator. Given the
tools actually used, this project should be rewritten to engage students in their use.

3-6-99

V 1.2 Page 6 of 24

Project One
Introduction to the Microcontroller Development System

Complete by: References:
End of week two Emulator (summarizing handout)

Schematic for PIC Education Board

Before Lab:

[] Attend the demo.

[] On the Lab Teams sign-up sheet, list a handle together with your name and that of your partner (if you have
one). You will need one or two 3.5-inch floppy disks.

Using the emulator:

Please be sure to familiarize yourself with the information in the handout. This information goes into further
detail about the emulator than the information presented here in Project One.

[] Turn on one of the PCs, if necessary. Turn on power to both the PIC Education Board and the emulator.

[] Logon to the PC using the userid "PIC" (without quotes) and password "PIC" (without quotes). The login
process will take 30-60 seconds while the PC's hard disk is scanned for viruses. If a warning or error occurs
during login or bootup, please contact the TA.

[] See the P1 program attached to this handout. Copy it from a floppy borrowed from the Lab TA onto your
floppy disk. You will keep your files on a floppy, rather than on the PC's hard disk. In this way you will have
a backup copy that you carry away with you. We also want to avoid misuse of your files by someone else.

WARNING: All user files are deleted from the PC's hard disk whenever the computer is rebooted or a
user logs on.

[] Select the emulator software by clicking the appropriate button on the taskbar at the bottom of the screen.
Load the P1 source file (P1.ASM) into the emulator.

[] Insert your handle and name(s) somewhere within the first few lines of the program. Be sure that a semicolon
is placed at the beginning of the line so that your handle and name(s) will be considered as comments by the
assembler.

[] Save your updated P1 source file.

[] Assemble your P1 source file. If an error occurred during assembly, modify the source file, save it, and re-
assemble until all errors have been corrected.

NOTE: Treat all warnings generated during assembly as errors. Several forms of typos will result in
warnings being generated during assembly rather than errors. The warnings often result in
assembled code that does not perform as expected.

[] Print a copy of the generated list file, P1.LST, to familiarize yourself with the printing process. Refer to the
handout.

[] Download the assembled program (P1.COD) to the emulator.

NOTE: This step must be repeated every time the source is reassembled.

V 1.2 Page 7 of 24

WARNING: Failure to reload the assembled program into the emulator will result in wasting countless
hours trying to debug an outdated program.

[] Verify that the emulator has been setup correctly to emulate the PIC16C74A microcontroller with a 4 MHz
clock (for a 1 MHz internal clock rate).

WARNING: Failure to configure the emulator correctly will result in wasting countless hours trying to
debug a flawless program.

[] Run P1. Press the INC and the DEC keys to monitor how the program echoes the encoder emulator outputs to
the lower two LEDs.

[] Stop the execution of the program.

[] Often when debugging a program, there is a known point at which you want to stop the program and view
what has happened to variables up to that point. The emulator provides the ability to set breakpoints that
allow program execution to be stopped automatically once a specific program location has been reached. Set
up a breakpoint at the address label RPG.

[] Viewing the contents of various PIC registers/RAM variables can be accomplished by setting up a watch
window. Add PORTD and OPTION as watch variables. Now that a watch window has been configured,
whenever the program stops executing (e.g., by reaching a breakpoint or by single stepping), the values
displayed in the watch window will be updated.

[] When you are ready to begin execution again, you have the option of beginning from reset or of beginning
from the point where you stopped. Run from reset to the breakpoint at the beginning of the RPG interrupt
handler. Press the INC key to initiate an interrupt.

[] To facilitate debugging, the emulator supports single-step instruction execution. Single step through the RPG
handler, watching the effect of each instruction upon the two watch variables.

[] Remove the breakpoint.

[] Set up the MPLAB-ICE 2000 emulator’s trace feature to trigger about “RPG”. Run from reset and press the
INC key to cause an interrupt. Stop execution. Look at the trace display, and examine the captured execution
of instructions leading up to the RPG trigger point. In particular, back up to where the PIC was executing the
mainline code just before it fielded the interrupt. What was the CPU doing at the time of the interrupt? Can
the emulator be set up to show the cycle by cycle operation from mainline program to interrupt service routine
so you can see how cycles were used in the transition (i.e., the transition indicated on page 76, in Figure 5-2)?
What you do not want to do here is have the emulator filter out dummy cycles. Does the operation match that
of Figure 5-2?

[] Now move past the trigger point in the trace display and monitor the operation of the successive instructions
upon PORTD and OPTION. Does this give a more helpful view of how the instructions affected these
registers?

[] Set up the emulator to capture just the instruction labeled MainLoop but to do so repeatedly so as to capture
the successive times it takes to traverse the mainline loop. Run from reset and then examine the captured
results in the trace buffer. Are these times all exactly 10,000 cycles? Or do they vary slightly? If so, how
much do they vary and why?

Winding Up:

[] Be sure to save your file(s) onto your floppy disk.

V 1.2 Page 8 of 24

Project Two
Bar Graph Display

Reference:
Chapter 10 Analog-to-Digital Converter

Project Description

For this project you are to turn on a number of LEDs, starting from the bottom, which is proportional to the output from
the top potentiometer.

RPG Handler

Delete all the lines of this handler other than the
bcf INTCON,INTF

instruction at the beginning and the
goto Poll

instruction at the end.

When on a future project we want to use the “INC” and “DEC” keys, we will fill in this handler with the instructions
to take appropriate action.

Analog-to-Digital Converter

The top potentiometer is connected to the RA3/AN3 input on the PIC. Referring to the Initial subroutine for Project
One, ADCON1 is already correctly initialized to B'00000100'. Referring to Figure 10-6 on page 187, ADCON0 might
be loaded with B'01011001' each time a conversion is to be initiated so that if another of the ADC inputs is used on a
later project, this will still work.

MOVLF B'01011001', ADCON0 ;Select ADC's AN3 input
bsf ADCON0, GO_DONE ;Start conversion

Then test this GO_DONE bit to wait until it returns to zero (after the nineteen-microsecond conversion time) before
reading the result from the ADRES (A-to-D Result) register.

Bar Graph Subroutine

This subroutine should be called each time around the mainline loop. It should initiate a conversion of the
potentiometer's output voltage and then wait for the completion of the result. If the result is H'00', then turn off all
PORTD LEDs. Otherwise, call the BarTable subroutine described below. Take the value returned by the subroutine
in the W register and write it to PORTD.

BarTable Subroutine

We will not use the BlinkTable subroutine any more. However, you are to create a new BarTable subroutine that
does a similar operation, so just rename and modify the BlinkTable subroutine to do this. It is important that whatever
tables you create in your code be placed within the first 256 program locations. Locating any tables in the section of
code following the Vectors section will accomplish this.

Noting that the upper three bits of the ADRES register divide the potentiometer’s range into eight equal parts, move
these three bits to bits 2, 1, 0 of W, blanking the remaining bits. Then return from the subroutine with W loaded with
one to eight ones which can be written to PORTD to represent the Bar Graph display of the pot’s output voltage. The
highest voltage range should turn on all eight LEDs while the lowest of the eight ranges should turn on just the bottom
LED. If ADRES = B'00000000', turn off even that bottom LED.

V 1.2 Page 9 of 24

Project Three
Bar Graph Intensity

Reference:
Section 6.3 Timer0

Project Description

For this project, your code for Project Two should continue to work. In addition, the middle pot is to control the
intensity of the LEDs by pulse-width modulating them. Use Timer0 to control the PWM duty cycle.

Analog-to-Digital Converter

The middle potentiometer is connected to the RA1/AN1 input on the PIC. Referring to Figure 10-6 on page 187, load
ADCON0 with B'01001001' each time a conversion is to be initiated:

MOVLF B'01001001', ADCON0 ;Select ADC’s AN1 input
bsf ADCON0, GO_DONE ;Start conversion

Then test this GO_DONE bit to wait until it returns to zero before reading the result from the ADRES (A-to-D Result)
register.

Timer0 Interrupts

Change the initialization of the INTCON register to include the setting of the T0IE bit shown in Figure 6-5 on page
101. Add to the polling routine in the IntService interrupt service routine the following code

btfsc INTCON,T0IF
goto Intensity

where Intensity is the interrupt handler which does the pulse-width modulation steps discussed below. Conclude this
handler with

goto Poll

Intensity Interrupt Handler

Initialize (the bank 1 register) OPTION_REG as shown on page 102 in Figure 6-6. If you set the prescaler to 32, then
TMR0 will take 8.192 milliseconds to count through its 256 states. We will divide this interval into two parts as
determined by the value, N, obtained from AN1, the analog-to-digital converter input connected to the middle
potentiometer. The 8.192 millisecond cycle will produce a pulse-width-modulation frequency which is fast enough to
produce no visible blinking on the LEDs (with approximately 122 blinks per second) and yet slow enough so that the
CPU will spend a very small percentage of its time controlling the intensity of the LEDs.

Change your code for Project Two so that instead of writing to PORTD, you write to PORTD_CPY. Now you will
copy PORTD_CPY to PORTD to turn on the on LEDs for N counts of TMR0. You will clear PORTD to turn off all
LEDs for 256-N counts of TMR0.

Note from Figure 6-5 on page 101 that an interrupt can be generated when TMR0 rolls over from 255 to 0. On every
other interrupt, clear the T0IF interrupt flag and then control the pulse-width modulation of the LEDs by loading 256-
N into TMR0 and turn on the on LEDs. When the alternate interrupts occur, clear the T0IF interrupt flag, turn off all
LEDs, and load N into TMR0.

V 1.2 Page 10 of 24

Define a variable called INT_FLAG to keep track of alternate interrupts. Complement it each time that the Intensity
handler is entered. Then test bit 0 (or any bit) to distinguish between alternate interrupts.

For any value of N which is 5 or less, clear the T0IF interrupt flag, turn off all LEDs, and do not change TMR0. For
any value of N which is 250 or more, clear the T0IF interrupt flag, copy PORTD_CPY to PORTD, and do not change
TMR0. With these modifications, we will insure that at least 160 microseconds occur between Timer0 interrupts,
plenty of time to complete one servicing before being asked to undertake the next one.

Measuring Duty Cycle

Immediately after copying PORTD_CPY to PORTD set bit 4 of PORTA with
bsf PORTA,4

Immediately after clearing PORTD clear bit 4 of PORTA with
bcf PORTA,4

A scope display of the resulting waveform will show the duty cycle.

Measuring CPU Overhead due to LED Intensity Control

Insert
bsf PORTA,2

as the first instruction of the IntService interrupt service routine. Insert
bcf PORTA,2

just before the final retfie instruction of IntService. Consider how a scope display of the resulting waveform will give
an indication of the percentage of CPU time spent dealing with the LED intensity control.

V 1.2 Page 11 of 24

Project Four
LCD Display

References:
Section 7.6 LCD Display
Section 8.5 Display strings
Section 8.7 Display of Constant Strings
Example file LED.asm
Information file Character codes.tif

Project Description

For this project, your code for Project Three should continue to work. In addition, initially display the following
message, centered on the top line of the display:

Press ENTER
When the ENTER key is pressed, display the names of you and your lab partner, again centered on the display. When
the ENTER key is released, redisplay the initial message. Update the display when ENTER is changed.

LED.asm File

When this file is assembled and executed by the PIC on the PIC Education Board, it will write UL in the upper-left-
hand corner of the display, UR in the upper-right-hand corner of the display, LL in the lower-left-hand corner of the
display, and LR in the lower-right-hand corner of the display. Try it.

Book versus PIC Education Board Differences

The Hitachi LCD display discussed in Section 7.6 uses the PIC’s Serial Peripheral Interface (SPI) and a 74HC164 shift
register to acquire bytes from the PIC eight bits at a time. The FEMA LCD display on the board uses the upper four
bits of PORTB to acquire bytes from the PIC two four-bit nibbles at a time. While both the Hitachi and the FEMA
displays can employ either a four-bit or an eight-bit interface to the PIC, the initialization required for the four-bit
interface is somewhat different from that for the eight-bit interface. Furthermore, you will note that the LED.asm file’s
Initial, InitLCD, LCDinit_Table, DisplayC, DisplayC_Table, and T40 subroutines are somewhat different from the
corresponding subroutines in the book, mainly because of the four-bit interface.

Another set of differences arises because Hitachi displays (and most other LCD character displays) employ an
HD44780U Hitachi controller chip and other parts mounted with the display on a PC board module. In contrast, the
FEMA display uses a tiny FCS2314AK Fujitsu controller chip mounted right on the glass substrate of the LCD display
itself. By the time Fujitsu made their controller chip, the technology had advanced such that what had been a board of
parts for Hitachi was now designed as a special purpose microcontroller by Fujitsu. Functionally, the Fujitsu unit is an
upwardly compatible extension of the Hitachi unit. It understands all of the Hitachi commands. While I have not been
able to find the Fujitsu data sheet on the Internet, the Hitachi HD44780U data sheet can be found by going to Hitachi’s
web page (http://semiconductor.hitachi.com/) and then searching for HD44780U. This data sheet will correctly answer
most questions concerning our display.

The 5x7 characters displayed for all of the ASCII codes shown in Figure 7-9 on page 138 are the same. The complete
character set is shown in the attached Character codes.tif file. This Fujitsu unit includes characters that are useful for
making an 80-element horizontal Bar Graph display extending horizontally across one of the rows of what is normally
a 16x2-character display. Likewise, it includes characters that can be used to make a 14-element vertical Bar Graph
display using any two characters located in the same column.

V 1.2 Page 12 of 24

Initial Subroutine

Your Initial subroutine must be terminated by calling the InitLCD subroutine last thing (just before the “return”
instruction is executed). By that point, the ports and the LoopTime subroutine needed by the InitLCD subroutine will
have been set up correctly.

InitLCD and LCDinit_Table Subroutines

The InitLCD subroutine first pauses for a quarter of a second because both the Fujitsu controller chip and the PIC have
a power-on reset circuit. The quarter-second pause insures that when the PIC starts to execute the code which will
initialize the LCD display, the Fujitsu controller will be out of reset, ready to accept commands.

The subroutine next calls the LCDinit_Table subroutine with LCD_TEMP = 0. This subroutine adds the zero to the
program counter and jumps to the very first retlw instruction, returning with H'33' in W. Each subsequent time
LCDinit_Table is called, it will be with LCD_TEMP incremented by one. In this way the InitLCD subroutine gets
byte after byte from the string of bytes stored via the successive retlw instructions in LCDinit_Table. When the byte
retrieved equals zero, the end of the string has been reached.

The display is initialized to the nibble mode (whereby subsequent bytes are received as two successive 4-bit nibbles) by
sending each of the nibbles of the first two bytes (i.e., 3 - 3 - 3 - 2) interspersed with the strobing of the display’s E pin
and a pause to allow each nibble to be digested. The RS pin of the display is held low for all nibble transfers, telling
the display that these are commands, not displayable characters. Subsequent nibbles are paired together into bytes by
the display. These four bytes tell the display controller that it is controlling a two-row display that is to be blanked
initially and that it is not to display a cursor. The display controller is also told that a string of displayable characters
received by the display is to be written from left to right across the display.

DisplayC and DisplayC_Table Subroutines

The DisplayC subroutine has a parameter passed to it in W which represents an offset from the CDS label in the
DisplayC_Table subroutine to the beginning of the string of characters that will form a fixed message on the display.
Each of the characters in the string is stored as part of a retlw instruction. For example, the _UR label identifies the
beginning of a display string having the format described in Section 8.5 on page 149:

Cursor-positioning code
ASCII string of characters to be displayed
End-of-string designator, H'00'

For the _UR label, this becomes
C0 The cursor positioning code which will place the cursor at the first column of the second

row of the 16x2 display. The cursor-positioning codes for every character position are
shown in Figure 7-8 on page 137 for rows 1 and 2 and columns 1 to 16.

55 This is the ASCII code for the upper case letter U. The dt assembler directive tells the
assembler to convert the characters between the quotes to their corresponding ASCII codes
and to embed them into retlw instructions. The ASCII table shown in Figure 7-9 on page
138 shows U being coded as 0101 0101 which is the same as hex 55.

52 This is the ASCII code for R.
00 This is the end-of-string designator.

The DisplayC subroutine employs a loop of instructions. Each time around the loop, the next byte in the string is
returned by the DisplayC_Table subroutine. The display receives the first byte with its RS (register select) input low.
This signifies to the display that the C0 byte is to be treated as a control byte, to set the position where the subsequent
characters are to be displayed. At the end of the first time around the loop, the RS input is set to one so that all
subsequent characters sent to the display are treated as displayable characters, not control codes.

V 1.2 Page 13 of 24

Modification of DisplayC_Table

The strings you are to display for this project will be known at the time of assembly (e.g., "Press ENTER"). That is,
they are constant, or fixed, strings. You need to create a new display string in the DisplayC_Table subroutine for each
one of them, with a label to name each string (e.g., "_Press") and the appropriate sequence of retlw instructions to
handle each byte of the string. Then to display the new string, your mainline code will execute an instruction sequence
analogous to

movlw _Press-CDS
call DisplayC

Use of Enter Switch

Note that this switch is connected to bit 2 of PORTE. When the switch is pressed, a zero is sensed on this pin.

V 1.2 Page 14 of 24

Project Five
Display of Character Codes

Project Description

For this project, your code for Project Four should continue to work, subject to the modification that you are to use the
ENTER key to toggle the display between several options. Initially, display the same "Press ENTER" message as for
Project Four. Thereafter, presses of the ENTER key should toggle between two options. These are your names, from
the last project, and the display of character codes, described below. When in the "display character codes" mode, you
are to display the following. In the upper left hand corner of the LCD display:

<two hex digit number> <space> <the displayable character coded by this two hex digit number>

The entire bottom row of the LCD display is to display the sixteen displayable characters for the column of the ASCII
table in which the above two-hex-digit number resides. For example, if the two-hex-digit number is 4B, then the top
row will be

4B K
(because the ASCII code for the letter K is 4B) and the bottom row will be

@ABCDEFGHIJKLMNO

The RPG emulator introduced with Project One (whose function was deleted with Project Two) will be used to
increment and decrement a one-byte variable called CHARCODE (initialized to H'30'). Each INC interrupt is to
increment CHARCODE, stopping at FF. In like manner each DEC interrupt is to decrement CHARCODE, stopping at
00. It is this number which is to be expressed with two hex digits in the upper-left-hand corner of the display.
Likewise, it is this number which is to be used as the code of the displayable character shown in row 1, column 4 of the
display. And it is the left-most hex digit that is to determine which column of the ASCII table to show in the second
row.

ENTER Key

Each time around the mainline loop, a subroutine named EnterKey is to be called. It compares the state of the ENTER
key with what it was last time around the mainline loop. Only if it has changed from one to zero is action to take place.
Initialize a variable called ENTFLG to zero. Then, each time the ENTER key is pressed, change ENTFLG as
follows 0,1,2,1,2,1,2,1,2,1,2,....
Every tenth of a second, the EnterKey subroutine is to take one of the following three actions. With ENTFLG=0,
rewrite "Press ENTER". With ENTFLG=1, rewrite your names. With ENTFLG=2, call a Character subroutine
which will, in turn, update the display as described above. Each time the ENTER key is pressed, first clear the display
to make way for the new display (which may not overwrite all character positions).

To clear the display, add two constant display strings to DisplayC_Table, one called _ClrRow1 and the other called
_ClrRow2. Calling the DisplayC subroutine when W has been loaded with _ClrRow1-CDS is to write sixteen blank
characters to the top row of the display.

DisplayV Subroutine

For the last project, we had a DisplayC subroutine which extracted the bytes of a display string from program memory.
For this project you will need a DisplayV subroutine which will extract the bytes of a display string from RAM. Make
a copy of the DisplayC subroutine and edit it as follows to create a DisplayV subroutine.

• Change the name of the subroutine in the copy to DisplayV. Change labels in the subroutine accordingly.

V 1.2 Page 15 of 24

• Save pointer in W to FSR.
• Get byte from string into W using indirect addressing (i.e., by using FSR as a pointer to the string entry)
• Increment FSR to point to the next byte

To update the LCD display with a variable display string, load W with its address and call DisplayV.

Row1 Display String

Add the following to your RAM variables:
Row1:6

This will reserve six characters for the display string needed for displaying the four characters in the top row. Initialize
the content of Row1 with H'80', the cursor-positioning code for the upper-left-hand corner of the display. Initialize the
content of Row1+3 with H'20', the ASCII code for a blank character. Initialize the content of Row1+5 with H'00', the
end-of-string designator.

Write a subroutine called ASCIIcode which first copies CHARCODE to Row1+4 and which then fills in Row1+1 and
Row1+2 with the ASCII code for each hex digit making up the number in Row1+4. (Use the content of Row1+4, not
the content of CHARCODE, when doing this.) For example, if CHARCODE contains H'4B' (the ASCII code for the
letter K), then Row1+4 should be loaded with H'4B', Row1+1 should be loaded with H'34' (the ASCII code for the
number 4), and Row1+2 should be loaded with H'42' (the ASCII code for the letter B).

Before calling DisplayV to display the Row1, call ASCIIcode to complete the display string, given a possibly changed
value of CHARCODE.

Row2 Display String

Add the following to your RAM variables:
Row2:18

Initialize the content of Row2 with H'C0', the cursor-positioning code for the lower-left-hand corner of the display.
Initialize the content of Row2+17 with H'00', the end-of-string designator.

Write a subroutine called FillRow2 that copies the content of Row1+4 into W, and forces the lower four bits of W to
zero. Then, with FSR loaded with the address of Row2+1, store indirectly. In a loop, increment FSR, increment W by
adding 1 to it, and store W indirectly. Keep this up until all sixteen entries between Row2+1 and Row2+16 have been
filled. Then return.

Before calling DisplayV to display Row2, call FillRow2 to complete the display string, given a possibly changed value
of CHARCODE, as reflected in a changed value of Row1+4.

Character Subroutine

This subroutine calls ASCIIcode, calls FillRow2, loads FSR with the address of the Row1 display string, calls
DisplayV, loads FSR with the address of the Row2 display string, calls DisplayV again, and then returns.

V 1.2 Page 16 of 24

Project Six
Temperature Measurement

References:
Data sheet Tmp03_4.pdf (Analog Devices TMP04 temperature sensor data sheet)

(http://www.analog.com/pdf/tmp03_4.pdf)
Example file Math.asm
Include file Math.inc
Section 6.5 CCP2 capture mode (Figure 6-10)

Overview

For this project, all the old stuff should continue to work. In addition, add the final screen we will use with the LCD
display. Every time the ENTER key is pressed, now change ENTFLG as follows 0,1,2,3,1,2,3,1,2,3,.. With
ENTFLG=3, every tenth of a second update a display of the temperature having the format

 71.4 °F(for temperatures under 100 °F)
or

104.7 °F(for temperatures over 100 °F)

located at the bottom right hand corner of the LCD display.

Temperature Algorithm

The temperature sensor emits a pulse-width-modulated waveform. Define the interval during each period when the
waveform is high as T1 and the interval when it is low as T2. Then the temperature, expressed in tenths of a degree
Fahrenheit, is

Temperature = 4550 - [7200xT1/T2]

T1 and T2 are going to be measured with the input capture feature of the PIC and will range between 10000 to 30000
(or thereabouts). To maintain accuracy, first do the multiply and then the divide using the math algorithms of math.asm
and math.inc.

Example: T1 = 11424 µs and T2 = 21683 µs

7200 x 11424 = 82252800
82252800 / 21683 = 3793
4550 - 3793 = 757
The temperature in this case is 75.7 °F.

Incidentally, while the accuracy of the TMP04 temperature sensor is typically about ±2 °F, the incremental accuracy is

much better than this. That is, if a temperature change from 75.7° to 75.9° occurs, this change of 0.2 °F is much more

accurate than the ±2 °F absolute accuracy would indicate since most of the errors making up the absolute accuracy
cancel out when an incremental temperature measurement is made.

Binary to ASCII Conversion

After you have completed the calculation of the temperature, you need to take the two-byte binary result and break it
into a three-ASCII-character result. If you divide the two-byte binary value by ten, the remainder will be the units digit
value. Add H'30' to this to convert it to the ASCII code for the digit. Dividing the quotient by ten will yield the tens
digit in the new remainder and the hundreds digit in the new quotient.

V 1.2 Page 17 of 24

Math Subroutines

The two files referenced, math.asm and math.inc, are derived from Microchip Technology’s Application Note AN617
entitled "Fixed Point Routines". If you want to obtain this application note, it is available on Microchip’s web site
(http://www.microchip.com). Search that site for AN617 to get the Acrobat version (.pdf) of the file.

Copy into your file only those math subroutines contained in the “math.asm” file which you use. Then be sure to insert
the line

#include math.inc

immediately after the cblock ... endc construct already present in your code. The include file not only defines the math
macros invoked by any of the math subroutines which you copy from the "math.asm" file, it also adds the RAM
variables used by the math routines to the list of variables already defined in your code. The placement of this include
statement into your code must occur after your variables have been assigned to addresses (beginning at address H'20').
Note that your code has the construct

cblock Bank0RAM
 .

 .
endc

whereas the “math.inc” file has the construct

cblock
 .
 .
endc

The Microchip assembler uses a parameter with the cblock assembler directive as the address which is to be assigned
to the first variable within the construct. The remaining variables are assigned to the consecutive addresses that follow
this one. A cblock assembler directive that does not include a parameter (as is the case within the math.inc file) will
assign its variables to addresses that begin where a previous "cblock ... endc" construct left off.

All of the math subroutines expect the two operands to be passed to them in two variables called AARG (An argument)
and BARG (B argument). The bytes of these two arguments are names, AARGB0, AARGB1,... where the B0 byte
represents the most-significant byte. The result of an operation is represented the same way. However, a common
error is to extract the result from the wrong bytes. For example, if you divide a 32-bit number by a 16-bit number, the
result (in general) can be as large as 32 bits. In our case, the result will be only 16 bits (as you would expect, since to
form the temperature it is subtracted from 4550, another 16-bit number). You need to take the 16-bit result from
AARGB2 and AAARGB3, not from AARGB0 and AARGB1.

Measuring Time Intervals

Every tenth of a second when the temperature display is to be updated, carry out the calculation of temperature using
whatever values of T1 and T2 are available. Update the appropriate display string and send it to the display. Then
begin the next temperature measurement by setting up an input capture interrupt when the next rising edge occurs on
the CCP2 input. Be sure to clear the interrupt flag before enabling the interrupt. Also note that since this interrupt is
enabled by setting a bit of a bank 1 register (i.e., the CCP2IE bit in the PIE2 register), you should set it using indirect
addressing. When the interrupt occurs, save CCPR2H and CCPR2L, the captured time of occurrence of the rising
edge of the PWM output of the temperature sensor. Now set up to capture the time of occurrence of the next falling
edge. Finally, set up to capture the time of occurrence of the next rising edge. When this has been done, disable
further CCP2 interrupts and update T1 and T2 with the newly formed values. If T1+T2 is less than forty-five
milliseconds, are we assured of collecting a new value of T1 and T2 within the one hundred milliseconds between
display updates?

V 1.2 Page 18 of 24

Display String

The temperature will be displayed as seven characters (e.g., 103.4 °F). Add the following to your list of variables:
TEMPSTG:9

This will reserve nine bytes, with the first byte named TEMPSTG. In your initial subroutine, initialize the first byte to
the proper cursor positioning code so that the temperature will show up at the bottom right hand corner of the LCD
display. Initialize TEMPSTG+4 with the ASCII code for a decimal point. Initialize TEMPSTG+6 with the “ASCII”
code for the degree symbol which is coded as H‘DF’. You also need to initialize the “F” and then clear TEMPSTR+8

to serve as the end-of-string designator. When you display a temperature under 100.0 °F, blank the hundreds digit with
the ASCII code H‘20’.

V 1.2 Page 19 of 24

Project Seven
RPG Parameter Entry

Project Description

For this project, the action of encoder emulator keys, INC and DEC, is to depend upon what is being displayed on the
LCD display. If ENTFLG =2, then continue to use these keys to cycle through the ASCII characters. If ENTFLG=3,
then use these keys to increment or decrement a number in the upper right hand corner of the display ranging between
10 Hz and 9990 Hz.

Procedure

Define a variable called NUMCOUNT as a one-byte, two's-complement number, where "0" is coded as H'00', "+1" is
coded as H'01', "-1" is coded as H'FF', etc. For each INC interrupt when ENTFLG=3, increment NUMCOUNT. For
each DEC interrupt when ENTFLG=3, decrement NUMCOUNT.

Within the mainline subroutine RPG_Count, first test NUMCOUNT for zero and do nothing if it is zero. Otherwise,
check the most-significant bit and either increment or decrement NUMCOUNT appropriately, then decrement or
increment the ASCII string in RPGSTR appropriately. However, do not change beyond the range from 1 to 999.

Create a display string that will produce a display having the following format:

xxx0 Hz

(where the xxx is constrained to the range from 1 to 999), with leading zeros blanked, giving a frequency range of 10
Hz to 9990 Hz for the entry of a frequency parameter (which will be used to generate a square wave output with this
frequency on the next project). Blanking leading zeros means that instead of displaying

0240 Hz
display instead
 240 Hz

Note that if the output is 10 Hz, then a DEC interrupt should produce no change. Likewise, if the output is 9990 Hz,
then a INC interrupt should produce no change.

Initialize the display to "1000 Hz".

SCALE10 Counter

For the last project, you updated the display every tenth of a second, counting ten loop times to keep track of tenths of a
second. If the counter that did this counting was called SCALE10, then you might update the display with temperature
when SCALE10 equals zero. If you update the display with the string developed here when SCALE10 equals one,
then you will do the updating of both items every tenth of a second, but not during the same loop time. This will help
to spread the load on the CPU among separate times around the loop (so as to help keep the time taken by everything
other than the LoopTime subroutine to less than ten milliseconds).

V 1.2 Page 20 of 24

Project Eight
Square-wave Output

Reference:
Compare Mode (Section 6.4)

Project Description

Using the entered value from Project Seven, generate a squarewave on the PIC’s CCP1 output with a frequency equal
to the displayed value. Initialize the frequency to 1000 Hz.

CCP1 Initialization

Refer to Figure 6-7 on page 104. Change the initialization of TRISC so that bit 2 is cleared. Add the initialization of
CCP1CON (H‘09’). Define a new sixteen-bit variable with the two one-byte variables HALFPERL and
HALFPERH. Initialize these variables to one-half of the period of the initial frequency setting; that is, 500
microseconds or 500 cycles of the PIC’s internal 1 MHz clock. Thus initialize HALFPERH to H'01' and HALFPERL
to H'04' since D'500' = H'01F4'.

An interrupt to the CPU must be made to occur whenever the sixteen-bit register TMR1 equals CCPR1. Accordingly,
the interrupt source must be enabled by setting the CCP1IE bit in the (bank 1) PIE1 register. You can use a bsf
PIE1,CCP1IE instruction to do this since the power-on-reset content of the PIE1 register is H'00' (refer to the "Value
on POR" column of the table on page 250).

Be sure to take into account the bank location of each of these registers as you add code into the Initial subroutine.

CCP1 Interrupt Handler

Referring again to Figure 6-7, the sixteen-bit counter, TMR1, will increment continuously every microsecond (with our
external crystal having a frequency of OSC = 4 MHz). A CCP1 interrupt will occur when the sixteen-bit counter,
TMR1, equals the sixteen-bit register CCPR1. At the same time, the CCP1 pin will be either set or cleared, depending
upon whether bit 0 of the CCP1CON register is cleared or set. The setting or clearing of the CCP1 pin takes place at
this time even though the CPU is probably executing code in the mainline program at this time. That is, the
CCP1/TMR1 circuitry controls the time of each edge, not the CPU. Thus, the output waveform can be made jitter-free
by using the timer circuitry in this way.

The handler has four jobs. It must toggle an otherwise unused output pin to illustrate the jitter which can arise when
the CPU is involved in generating output changes. (Use bit 5 of PORTA for this purpose, removing from your code
any earlier use of this pin.) It must toggle bit 0 of CCP1CON (leaving the other bits unchanged) so that the opposite
edge will occur on the CCP1 pin when the next interrupt occurs. It must add HALFPER to CCPR1 so that the next
compare will occur exactly one-half of the period of the waveform after the one that has just occurred. (Add the lower
bytes, increment the upper byte if a carry occurs, then add the upper bytes.) Finally, it must clear the CCP1IF flag in
the PIR1 register. Note that if this flag is cleared first rather than last, erroneous behavior of the output waveform will
occur occasionally, for some values of frequency. Why is this?

RPG_Count Subroutine

Modify this subroutine with the introduction of a new two-byte variable called FREQH,FREQL. Initialize it to
D'1000' = H'03E8'. Each time that the value of the frequency is changed in response to presses of the INC or DEC key,
change both RPGSTR and FREQ. Thus, these should always represent the same number, the one in ASCII string
form, the other as a two-byte binary number. Also, set a flag called RPGCHG when such a change occurs. This flag

V 1.2 Page 21 of 24

will serve as a signal to the Period subroutine, below, to recalculate the half-period value, HALFPER, from the new
frequency.

Period Subroutine

This subroutine checks the RPGCHG flag. If set, the subroutine clears it, recalculates the value of HALFPER, and
returns. If clear, the subroutine simply returns.

The relationship between HALFPER and FREQ is given by

FREQ x10= 1,000,000/(2xHALFPER)

Or

HALFPER = 50,000/FREQ

where FREQ has units of 10 Hertz while HALFPER has units of clock cycles (or microseconds). Accordingly, we
need to execute a division of a sixteen-bit unsigned binary number by a sixteen-bit unsigned binary number, which will
produce a result that, even with FREQ=1, will fit in a sixteen-bit binary number. Use the FXD1616U subroutine in the
math.asm file.

V 1.2 Page 22 of 24

Project Nine
Rate-Sensitive RPG Parameter Entry

Project Description

For Project Seven we entered a parameter having 999 values using an RPG emulator which produces a maximum of
about 33 interrupts/second. Thus to change from one extreme to the other requires 999/33 = 30+ seconds. Instruments
(e.g., function generators) commonly use an RPG for entering parameters, especially if the parameters must be
tweaked, or varied back and forth, around some nominal value. To get around the problem of turning the RPG knob
rotation after rotation to get to the desired nominal value, they resort to rate-sensitive RPG use. That is, if the RPG is
turned fast, it produces larger increments than if turned slowly.

For this project, introduce a new one-byte variable, RPGTIME. Every ten milliseconds when RPG_Count is called,
increment RPGTIME, stopping when Threshold (defined below) is reached. Modify the RPG_Count subroutine as
follows. If NUMCOUNT <> 0, then compare RPGTIME against Threshold. If RPGTIME equals Threshold then
change RPGSTR by one count. Otherwise, change by ten counts. In either case, reset RPGTIME to zero.

Threshold

We want to draw a distinction between the fast turning of an RPG and slow turning. Our encoder emulator translates
this distinction into a fast sequence of interrupts, spaced just thirty milliseconds apart, and a slow sequence of
interrupts, spaced 150 milliseconds apart when the INC or DEC button is first pressed or an even slower sequence of
interrupts, if one of these buttons is pressed and quickly released several times. If we pick Threshold to be any
number greater than 3 and less than 15, we will draw the distinction we want for our encoder emulator.

As an example of the analogous operation of an RPG, suppose that we have an RPG which generates 32 interrupts per
revolution. Then setting Threshold to 6 will distinguish turning rates of greater than one-half revolution per second
(i.e. 16 interrupts/second or 62 milliseconds between successive interrupts) from turning rates of less than this.

V 1.2 Page 23 of 24

Project Ten
Parameter Entry via Keypad

Reference:
State machines and keyswitches (Section 8.3)

Project Description

For this project all the old stuff should continue to work. In addition, a keypad-entered four-digit number representing
a voltage is to be displayed in the upper left-hand corner of the display

The four-digit number represents a second parameter which might be used in the setup of an instrument (e.g., the
amplitude of the output of a function generator). Display it in the format of a voltage ranging from -9.999V to 9.999V:

-x.xxxV or +x.xxxV

KEYSTR String

Create a new nine-byte display string for writing the seven-character voltage string to the left-most seven character
positions on the top row of the LCD display. Initialize it so that calling the DisplayV subroutine with it will produce a
display of

+0.000V

AnyKey Subroutine

Section 8.3 includes some code which is written for a keypad having a somewhat different connection to the PIC from
that which we have on our target system board. The question “Is any key pressed?” of Figure 8-3 is to be answered by
calling an AnyKey subroutine which is modified from that on page 146 to drive bits 7,6,5 and 4 of PORTB low and
then to test bits 3,2, and 1 of PORTB to see if all of them are high (corresponding to no keys pressed).

ScanKeys Subroutine

Modify the ScanKeys subroutine of page 148 to do the job described there, but for our target system. The subroutine
uses a new variable, TEMP, to test each key, one at a time, beginning with the "0" key. It does so by accessing a table
like that contained in the ScanKeys_Table subroutine, but changed (if necessary) to account for the different target
system configuration. Each table entry must have a zero in the position which drives the selected row of keys (e.g., the
top row with keys 1, 2, and 3) and ones in the other three row positions. In this way writing the table entry to the port
will select the desired row by driving it low. For example, the column selecting the "2" key is selected by writing

0111xxxx
to the port. Bits 3,2, and 1 of each table entry should match what will be read back from the port if the selected key is
pressed. Again for example, the table entry for the "2" key is

0111101x
The final bit of the table entry can be made zero.

The ScanKeys subroutine first initializes a KEYCODE variable to zero. Then it repeatedly tests key after key (key 0,
key 1, key 2, etc.), using KEYCODE as an offset into the table. The table entry from ScanKeys_Table is returned in
W. It is written to PORTB. Then PORTB is immediately exclusive-ORed with W, producing

0000000x
if the selected key is pressed.

V 1.2 Page 24 of 24

Because bit 0 of PORTB represents an input that is independently driven by the encoder emulator, its value, when read
back, is unrelated to what was written out to PORTB. Accordingly, W must be ANDed with

11111110
to force bit 0 to zero and to set the Z bit if the selected key (only) is pressed. The entire keypad is scanned in this way
until either a key press has been detected or all twelve keys have been checked unsuccessfully (for whatever reason).

KeySwitch Subroutine

Implement the algorithm of Figure 8-3. The action to be taken when a new keypress has been detected is to call a new
Voltage subroutine, described next.

Voltage Subroutine

This subroutine manipulates KEYSTR, which can be thought of as being represented by
sw.xyzV

If the key pressed is a digit key, it copies x to w, y to x, z to y, and finally copies KEYCODE (converted to ASCII) to
z. Then it calls the DisplayV subroutine to display this new string.

CHS Key

If this key is pressed, then change the ASCII code representing the sign of the number.

Decimal Point Key

If the "." key is pressed, then reinitialize the display to
+0.000V

